0.引言
客户关系管理(customer relationship management,简称CRM)是适应企业"以产品为中心"到"以客户为中心"的经营模式的战略转移而迅猛发展起来的新的管理理念,它把追求客户满意和客户忠诚作为最终目标。近年来,越来越多的国内外企业和软件开发商把CRM作为研究热点。CRM系统是集成了后台应用的前台应用系统,是在以客户为中心的销售、营销、服务和支持应用的增强、自动化的基础上,提高客户满意度和忠实度,从而给企业带来长久利益的一种应用和理念。许多企业在实施CRM时,正是违背了这条原则,致使CRM不成功的案例屡见不鲜。
现有的关于CRM的文章绝大多数探讨建立的系统和流程对高质量的CRM会产生什么样的影响,却很少关心实施CRM第一步要做的工作:知道谁是你的客户,以及影响他们行为的因素。现阶段企业能做到的,是了解(know about)自己的客户,而不是理解(understand)客户本身。KPMG报告指出:70%的UK公司承认很难发现谁是他们的客户,他们想买些什么。诸如此类的与CRM有价值的信息,在通常的报表和分析中是难以被发现的。
著名管理咨询专家Jim Berkowitz认为CRM必须具备两个坚实的基础:一个是合理的组织结构(Organization),另一个是合理的信息结构(Information)。如果企业实施CRM的动机是建立在各部门各自的利益之上而不是适应面向客户为中心的商业哲理、文化和战略,那么CRM就缺少了合理的组织结构基础。这种合理的组织结构是将一个共享的、更加整合的工作流和信息流代替原先集中的部门流程。这样,企业变成一个统一的组织,来有效预测客户需求,管理客户价值,简化企业运作流程。本文的出发点放在第二点,即如何创建一个适于CRM的、合理的信息结构。
另一方面,在激烈的竞争环境下,对有限数目的客户的争夺将加白热化。由于获取一个新客户的成本比保留一个老客户的成本大得多,采取什么样的客户保留措施来提高户忠诚度,已成为企业考虑客户关系时的关键问题。而这些答案已经存在于与客户的交往过程的记录中,即客户数据库中,只不过没有对客户数据进行有效地利用,从中发现潜在的、与客户忠诚有关的、有价值的知识。METAGroup行的一项调查中,800家商业和IT公司的经理们被问了一个问题:你是认为你的公司是否使用了客户数据来理解你的客户?29%的答案承认在一定程度上使用了客户数据来理解客户,67%的回答是否定的。仅有4%的回答是充分利用了客户数据。本文建立的CRM的信息结构不再局限于事务处理,更强调如何将分析工具应用于客户数据,将发现的知识用于与优化客户关系有关的决策问题。
1.客户智能
有些专家在研究中提到了客户智能的概念。本文将他们对客户智能的研究分为三大类:一、围绕客户智能的作用、内容、实质的研究。Mark Allen Smith将客户智能与客户分析等同起来。BO公司的PaulClark在分析客户智能与CRM的关系时认为:客户智能是CRM的智慧所在(the brains behind CRM)。二、围绕客户智能的实现的研究。JimBerkowitz提出"商业智能是CRM的基础"的观点。另一个难得可贵的地方是该研究对商业智能包括的组件进行了分析,将OLAP、数据仓库、数据挖掘技术作为商业智能的必备组件。三、与客户智能密切相关的研究。EmmaChablo则在研究中指出,客户知识是CRM的重要的组成部分,而营销数据智能是向CRM提供真正客户知识的CRM部分。他将营销数据智能定义为利用数据驱动营销手段和技术来提高对客户,产品和交易数据的理解和知识,以此帮助CRM制订战略决策。
由于研究的角度因人而异,很难从中总结出一个令人信服的定义。这其中存在一个共性:几乎没有人从知识在制订与客户有关的决策的过程中的作用这一视角来研究客户智能,而只有将对知识的研究作为出发点,才能够发现客户智能实质的内容,本文认为,客户智能,是创新和使用客户知识、帮助企业提高优化客户关系的决策能力和整体运营能力的概念、方法、过程以及软件的集合。对该定义的正确解释,本文结合下图的客户智能体系框架从五个层面展开:
1)理论基础:
客户智能的理论基础是企业对客户采取决策的指导依据,这既包括企业分析和对待客户的理论和方法,也包括分别从客户和企业角度进行的价值分析。通过消费行为分析、满意度分析、利益率分析等诸如此类的指标的测评与衡量,达到决策科学化、合理化的目的。
客户价值分析对与客户有关的活动具有巨大的支持作用。比如,标识客户(customer identification)、客户分类(customer segmentation)、客户差异(customer differentiation)、客户满意(customer satisfaction)、客户忠诚等客户活动有了客户价值分析的支持,就会有的放矢,引导正确的客户关系。
2)信息系统层面:
称为客户智能系统(CI System)的物理基础。表现为具有强大决策分析功能的软件工具和面向特定应用领域的信息系统平台,如CRM、ERP、销售自动化、商业活动管理。与事务型的MIS不同,客户智能系统能提供分析、趋势预测等决策分析功能。
3)数据分析层面:
是一系列算法、工具或模型。首先获取与所关心主题有关的高质量的数据或信息,然后自动或人工参与使用具有分析功能的算法、工具或模型,帮助人们分析信息、得出结论、形成假设、验证假设。
4)知识发现层面:
与数据分析层面一样,是一系列算法、工具或模型。将数据转变成信息,而后通过发现,将信息转变成知识;或者直接将信息转变成知识。
5)战略层面:
将信息或知识应用在提高决策能力和运营能力上、企业建模等。客户智能的战略层面是利用多个数据源的信息以及应用经验和假设来提高企业决策能力的一组概念、方法和过程的集合。它通过对数据的获取、管理和分析,为贯穿企业组织的各种人员提供知识,以提高企业战略决策和战术决策能力。
客户发展战略指的是企业坚持以客户为中心的发展战略,将企业内部资源条件与外部环境因素结合起来考虑,最终目标是使客户生命周期价值最大化。客户发展战略离不开企业其他战略类型的支持,如目标市场战略、营销组合战略、市场竞争战略、财务战略、协作战略、组织战略、人才战略等。以客户为中心的发展战略不能代替企业总体战略,但是总体战略最具有参照价值的战略。
客户智能系统(CISystem)是本文提出的实现客户智能的系统平台。它包括了客户智能体系中的信息系统层面、数据分析层面、知识发现层面,是基于客户智能理论的可操作的系统框架。因此,客户智能体系也可以简单地用客户智能基础理论和基于客户智能理论的客户智能系统两个逻辑层面表示(图2)。基于客户智能的CRM系统是本文描述的客户智能系统中的一种。
总之,客户智能的目标是将企业所掌握的信息转换成竞争优势,提高企业决策能力、决策效率、决策准确性。为完成这一目标,客户智能必须具有实现数据分析到知识发现的算法、模型和过程,决策的主题具有广泛的普遍性。
2.客户智能是对客户知识的生成、分发、使用
客户知识,顾名思义,是有关客户的知识。客户知识包括客户的消费偏好、喜欢选用的接触渠道、消费行为特征等等许多描述客户的知识。本文对客户知识进行如下分类:一、对话性客户知识:通过企业与客户之间正式或非正式的对话,以及客户与企业员工、企业员工与供应商等之间的互动交流,来了解客户的需求;二、观察性客户知识:透过观察客户使用产品或服务的状况来获得客户知识,汽车等高档消费品或工业用品的制造商主要通过这个方法得到客户知识;三、预测性客户知识:利用市场营销的专业分析工具和方法预测客户的需求与反应。预测性客户知识是本文构建的信息结构考虑的重点。
客户知识是人们通过实践认识到的、与客户有关的规律性,而客户智能是获得客户知识并使用客户知识求解问题的能力。客户智能是对企业战略决策真正有价值的事物和行动。客户智能不仅包括了客户知识的生成,而且更强调了客户知识在企业中的分发、使用,直到产生客户智能。所以,客户智能是对客户知识的生成、分发和使用(图3)。